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Stochastic resonance in one-dimensional diffusion with one reflecting
and one absorbing end point

M. Gitterman
Department of Physics, Bar-llan University, Ramat-Gan 52900, Israel
(Received 16 December 1999

An analysis of the nonmonotonic dependence of the mean-free-passage time on the frequency of a periodic
signal[stochastic resonan¢8R)] for diffusion on a segment with one absorbing and one reflecting end point
shows that SR exists only for some restricted values of parameters. SR always exists if the periodic telegraph
signal is replaced by a random one. The latter case is considered in detail.

PACS numbds): 02.50—r, 64.10+h

[. INTRODUCTION a replacement SR remains in underdamped sysf&indn
turn, deterministic chaos may induce the onset of SR instead
The stochastic resonandSR) phenomenon found ini- of a random signal9].
tially in dynamic nonlinear systems driven by a combination  Slightly different are the systems where a particle is dif-
of a random and a periodic field for¢&] appears, at first fusing on a line terminated by one or two traps. Such sys-
glance, as contradictory. Indeed, resonance, which is a phéems may be said to be characterized by two states, one in
nomenon usually associated with deterministic systemsyhich the particle is untrapped and the second in which it is
arises in stochastic systems as well. In some sense, SR tigipped. These two states appear instead of two states in a
opposite to the phenomenon of deterministic chaos, studiedouble-well potential. Quite surprisingly, it turned out as
intensively in the 1960s and 1970s, where the seeminglgarly as in 1988[10] that the mean first passage time
stochastic features appear in nonlinear dynamic system&éMFPT), until the particle is trapped by one of the end
Both phenomena of deterministic chaos and SR show thgtoints, behaves nonmonotonically as a function of both the
deterministic and random phenomena complement rathdrequency{10] and the amplitude of the periodic forf&1].
than contradict each other. This discovery, like that of theSimilar phenomena exist also in a one-dimensional diffusion
uncertainly principle, is beyond the scope of nonlinear me{process on a semi-infinite line terminated by a trapping point
chanics, having more general meaning, and represents one @fiven by a periodic force and a constant biasensure that
the main achievements of 20th century physics. It is not surthe MFPT will be finitg [12]. According to our terminology
prising, therefore, that—again like in the case of deterministhese phenomena also come under the heading of SR.
tic chaos—the number of researchers involved in the study As in the previously mentioned examples, the character-
of SR is increasing?2]. istic frequency that one needs for a “resonance” can be
We understand the phenomenon of SR in a broad senssypplied to a system not only by the external periodic force
namely, as the nonmonotonic behavior of an output signal obut also by the inverse correlation time of the nonwhite
some function of it as a function of some characteristics ofhoise, which can be applied to a system in addition to ther-
the noise or of the periodic signal. Such a widespread defimal white noise. A dichotomous noigeandom telegraph
nition includes not only SRyer se but also the related phe- signa) is the simplest form of nonwhite noise. The MFPT
nomena of “resonance activation,” ‘“coherent stochasticfor a diffusive particle subjected to dichotomous noise has
resonance,” etc. However, even with the large variety ofbeen calculated by constructing of all possible trajectories in
models of SR that have been analyzed and different applicd13,14], and for both white and dichotomous noiseq13)].
tions, there is still incomplete understanding of the condi-However, the topic of SR was not raised in these articles of
tions that may be necessary to produce SR. At first, the imthe 1980s, although it was inherent therein.
pression was that all three ingredients, nonlinearity, periodic, When the phenomenon of SR is being discussed in the
and random forces, are necessary for the appearance of SR90s for these linear systems, it turns out that the boundary
Then, it became clear that SR is generated not only in &onditions play a crucial role, namely SRhich was called
typical two-well but also in a monostable potential both inin this case “the coherent stochastic resonanaists only
the overdampef3] and in the underdampéd] cases. More- when one of the boundaries is absorbing and the other re-
over, it turns out that SR occurs even when each one of thedtecting [16], while it is absent when both boundaries are
ingredients is absent. Indeed, SR exists in linear systemabsorbing[17]. The same crucial influence of the boundary
when the additive noise is replaced by nonwhite multiplica-condition appears in a different problem of jumps in a linear
tive noise[5] or, in slightly artificial systems without internal double-well potential when the slope of the potential ran-
dynamics at al[6]. The periodic signal cannot be replaced domly fluctuates between two values at a rgteThe non-
by a constant force in overdamped systéifisbut with such  monotonic dependence of the MFPT gr(called “the reso-
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nance activation) [18]—see also19]—again exists only d4T d2T
when the boundary conditions are different at two endpoints. D2—4 —(v?+D7) 5= 2
Actually the similarity between these two problems—one- dXo dxo

dimensional diffusion under the influence of white and di-

chotomous noise, and the jumps through fluctuating lineahas to be solved subject to the boundary conditions at the
potential—is not so surprising since they are described byeflecting boundaryx,=L

the same differential equations.

The aim of this article is the analytical study of SR for dT d2T 1
one-dimensional diffusion on the segment under the influ- d—=0 and =D 3
ence of a telegraph signal for the case when one end point of %o dXo

this segment is absorbing while the other is reflecting. Two
cases will be considered: one of the periodic telegraph sigand at the absorbing boundaxy=0,
nal, and the other of a random telegraph sigdahotomous

noise. 43T dT
Since the calculation techniques are quite different for T=0 and D2—3—v2d—=0. (4)
these two cases, we will consider them separately. dxo %o

We explore further the previously indicatef®0,21]
method of finding the sufficierthot necessapycondition for ~ Skipping a considerable amount of routine algebra we obtain
detecting SR in complicated problems where the exact soluhe solution of Eq(2) subjected to the boundary conditions
tion is not available. If one wants to find whether the depen{3) and(4) as
dence of a characteristic tim@FPT in our casgon the

frequency of an external field, or on the noise correlation 27 02

time, or on the rate of fluctuations of some internal parameter T=— 0 +

is non-monotonic, the following method is suggested. First, 2(v?*+D7) v+ Drcoshul)]

one has to find—by some approximate method—the two )

limit values of the characteristic time for zero and infinite x E : —U)— v L—
values of the argument. In order to know whether @Bn- ZSinfu(xo—L)] MDscOSf[M( Xo)]

monotonic dependengexists one has to find the asymptotic

dependences for very small and very large arguments. If the T T v
characteristic time approaches the largésnallest limit - FCOSNMXo)“‘ Y FCOSKML)
value from abovebelow), the nonmonotonic behavior will M M K
be the geometric consequence. We illustrate this procedure

2

: AR L Lt utDXo| LT

in the case of periodic signal, and check it in the case of + —sinh(ul) + ———| —coshul)
random signal where the exact analytical solution is avail- D v D

able.

02
+ ——=sinh(uL)
ppd o H

} : ®

The state variable(t) is described in the overdamped where = (v%/D2+ /D)2
regime by the following Langevin equation - i

1. RANDOM TELEGRAPH SIGNAL

There are three characteristic times in our problem. The
dx first oner;=L?/D, has its origin in the diffusion process, the
= &)+ (1), (1)  second oner,= 7~ 1is the correlation time of the noise, and
dt the third oners=L/v, represents the strength of noise for the
) ) ) given problem. It is convenient, therefore, to introduce two
where &(t) is zero-mean uncorrelated white noise _Whosedimensionless parametets= 3/ 7,=D/vL and B=r3/7,
second-order moment {g(t) §(t;))=2Do(t—ty), inwhich  —| 7/, Using these parameters and introducing the dimen-

D is the diffusion constant. The second component of thejonless lengtty=x,/L one can rewrite Eq(5) in the fol-
noise, f(t), is the symmetric dichotomous noiseandom  |owing form:

telegraph signalthat is allowed to take of the valuesand -
v. The jump rates for the transition between these two states L2 5
will be denoted by 2 so that7~! is the noise correlation - { @By

time. ~2D| 1+ap

The calculation of the MFPTI(X,), for the time to trap a
particle, initially atx,, diffusing on a line segment (10) N 1 4—Bsinr<y—y) cosl’( V(Z—Y))
terminated by a trap at=0 and by a reflecting point at v 1+ aBcoshiv)]| @ 2 2
=L, is a well-known procedur§22]. One starts with the
Fokker-Plank equation for the probability densigx,t) as- 4  (vy\ . [v(2-y)| 48 . vy
sociated with the Langevin equatidf). Integration of this + Esml—(7) mI-(T) - asmhz<7>

equation over time and space gives the differential equation
for the mean first passage tinte=[§dx/5dt p(x,t). The 28
appropriate equatiofi 6] +y75inr( vy)+2yvﬂzcosh vy) ] , (6)
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wherev=uL = (1/a®+ Bla)*?. A few limiting cases are of which shows that the MFPT with the increasing noise rate
interest. Wher>1 for fixed 8, or 8>1 for fixeda, Eq.(6)  B=L7/v decreases from itdarger than that at infinite rate
reduces to the well-known expressi@2] for the MFPT for  limit value at3=0, i.e., no conclusions concerning the ex-
diffusion on a segment with one absorbing=0) and one istence of an additional maximum of the MFPT can be made

reflecting k=L) end points, from this analysis.
2
Xy | XoL lll. PERIODIC TELEGRAPH SIGNAL
=" o @

We return now to the original equatiqd) where, how-

This result is quite natural since>1 or ;> 73 means ever, Fhe random telegraph signit) is replaced by the
Perlod|c one

the diffusion is the fastest and, therefore, the decisive factor,

while 8>1 or 7,<75 implies that for very high rate, the +v for te[2nT,(2n+1)T]
dichotomous noise does not influence the MFPT. f(t)= ' (12
For low rate of dichotomous noisg<1, Eq.(6) reduces —v for te[(2n+1)T',(2n+2)T],
o where I' is the period of the telegraph signal, amd
2D [oxe| . [v(2L—x) =9,12,§ O Therate(frequency w of the signal is equal to
T=—sinh == |sinf ——=———1. g =) . .
v? 2D 2D The Fokker-Planck equation corresponding to the Lange-

vin equation(1)
A comparison between Eq$7) and (8) shows that the
limit expression(8) for small rate of dichotomous noise is P+ P+ 9°pa

+v —_
NG

always larger than the limit expressig#) for large rates, ot x D (13
and reduces to it only if, in additiory>1. The latter result

could be expected since the conditiars 1 and3<1 mean subjected to the initial conditiong. (X,t=0|xo)= d(x
T,>73>71, I.€., the diffusion process is the fastest and then_Xo), has a well-knowri23] solution on the segment (0)

the decisive one. , _terminated by the reflecting point=0 and by absorbing
Hence, we have obtained that the MFPT for zero rate I$0int x=L

always larger than that for infinite rates of the dichotomous

noise. If we can show now that the MFPT is increasing with 2 +u(X—Xg) vt
7 for large rates approaching the limit val@é), then the P (X,t|x0) = EeXF{T— 2D
existence of a minimum of the MFPT as a functionrofill

be a geometrical consequence. ~
To simplify the further analysis let us choose the initial X 2, €ogByX)COS BrXo)exp —DB3),
position of a particle at the reflective boundaxy=L ory n=0
=1. Then Eq.6) takes the following form (14
Lz{ «p 1 48 where B,=[(2n+1)7]/2L. The general solution of our
T=—1{ — + —sinh(v) problem can be obtained now by matching the solutidds
2D 1+aB  »[1+apcoshv)]| @ corresponded for biag v at the times at which the telegraph
signal (12) changes sign. If one defind%(x),k=0,1, ...,
_ ﬁsinhz v +2v82cosH{v) + isinhz(z) as the probabilities that at time= kI when the bias changes
av 2 val 2 its sign the system is found at positisgx+dx, the quanti-

9 ties P, (x) can be found20] from the obvious recurrence
©) relations

and its expansion for largg=L7/v is

L
2 Pra(0= [ Do Ty)PayIdy, (19
L 0

" 2D

1
1- — ) (10)

T Bt

where the signs 4" and “ —" in Eq. (15 correspond to
m=2n andm=2n+ 1, respectively, and the initial condition

i.e., the MFPT approaches the limit value at infinite nOisePO(y)=5(y—x0), which leads to

rate (smaller than that at zero ratérom below, which is

evidence for the existence of SR. P1(y)=p+(y.T'|Xo). (16)
At the same time, the asymptotic value of H) for
small 8 has the following form Then, the mean-free-passage tidurns out to be equal
[24,20
L? 262 1 262 1
T_ﬁ 4a°sin % — B| a+4asin -

* r L L
=3 | | “ax| ayip . (xtly) Py

T (1D

1
+4a33inhz(—
2a

+P_(X,t]y)Pons1(y)]. (17)
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The limit expressions for infinite and zero frequencies can Retaining only the leading term of the MFPT expansion
be found independently using the differential equations foraroundw= 0, which is of order exjp- D,8(2)+v2/4D/2w], it is
the MFPT[22]. For w—, the quickly oscillating signal, possible to keep onlp=0 terms in thep_. functions in Eq.
like in the case of dichotomous noise, does not influence th¢21), although the sum entering_ function has to be re-
MFPT, which is defined only by pure diffusion, and turns outtained. Under these assumptions, using Bdl) and per-

to be equa(22] forming integration ovex in the second term if21) one can
rewrite the leading term in the latter equation in the follow-
L2—x3 ing form:
T(w—)= . (18
2D )
v

_ o _ | DB+ 15
Notice that Eq.(18) is slightly different from Eq.(7) since T(w)= ECOS(,B xo)exd — UXo exg — 4D
now x=0 is the reflecting point, angd=L is the absorbing L 070 2D 20
one.

For the opposite limit case=0, the MFPT for a system jL F{ Ux)d
driven by white noise and a constant bias can be easily found cOS Box)ex 2D
[22]: 02

(Dﬂo+ D
L_XO D UL UXO
T(w=0)= +—2 ex D —ex LA L r{vy)
v + | dyco exp =<
19 JO y cod Boy)exn 55
The latter equation can be also obtained by substitutidy o [( 1) ,Bnexl< oL ) + 2
and(16) into Eq. (17) with T=o0, i.e., » 2D/ 2D
n=0 2 U2 2
) L Dﬂn+ Te)
T(sz)zf dtf dx p.(X,t]Xo)
0 0
2D UXO Uy
= TeX ) X cod Byy)ex D ) (22

{( 1)"3 exp(”L) -
~ n~"M2D) 2D
XE 772

n=0 U

(Dﬁ§+—

There is no need to calculate the sum in E9) since the
same sum—with opposite sign of—already appeared in
Eqg. (20), and one can use the result of summation given by

Eqg. (19). Substituting(19) with the opposite sign of into
X cog BnXo). 200 (22) one gets

A comparison between Eqg&l8) and (19) shows that, as 5 02
opposed to the case of dichotomous noise, for the periodic 2 X0 DBot 2D
telegraph signall(w=0)<T(w—). In order to find the T(w)= —cos(,@oxo)exp( — —) exp ————
small corrections inw to Eq.(19) one has to find the appro- L 2D 20
priate terms in the general expressia) for the MFPT. We L X
use here the straitforward procedure rather than the sophisti- J cog Box)exy{ ZD) dx
cated methods used [24,20. «{ _

According to Eq.(14), the time-dependent terms in Eq. 5 v?
(17) are of the form exﬁo—(DBﬁ+v2/4D)t], i.e., after inte- (DEOJF ﬁ)
gration over t they will transform to exp—(DBﬁ . y
+v2/4D)/2w]. This strong exponential dependencewmal- J ,{v_)
lowes us to leave only the=0 terms in Eq.(17) which, " 0 dycosifoy)ex 2D
after using Eq(16), leads to the following expression for the
the MFPT for smallw

L— D
)l Y, =
1%

vl vy
5 e o) e 2

|

r L L
+f dtf dXJ dyp-(x,t|y)p(y.I'[Xo).
0 0 0 Performing integration in Eq23) one obtains the expan-
(21 sion of the MFPT neaw=0,

T(w)~ jdtf dxp, (x,t|xo)

(23
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T L2 ’}/XO 7TXO 2 2
~ﬁex _I co Z exg —(y*+m )8L2w
|10 { 4 p<7 +3 WT
————| —4mexp 5 ——
(72 + 77 2]y
. 8 [77 F(37/ )+
———— | —exXp 5| —€eX
y(m?+yA Ly 2 [
el 7 @
- ———|—exg = |—3|;,
y(m2+9y?) Y 2

where y=vL/D. Analysis of Eq.(24) shows that this ex-
pression is positive fory>y,=10"°, and negative fory
<1y, i.e., for smally< vy, the MFPT decreases with start-
ing from its minimal valug(19) at w=0. Therefore, SR ex-
ists in this case. However, for largee> v, one cannot draw

a definite conclusion as to whether SR exists for sudtom
this asymptotic analysis that defines only the sufficient con
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exact solution is not available, as we show in the example of
a motion under the influence of the periodic telegraph signal.

The latter problem has been considered for the diffusion
on a line with two absorbing end poirtg4,20, where quite
complicated analyses of the low-frequency behavior have
been used. We suggested a much simpler method for such
analysis. The results obtained for our case of one absorbing
and one reflecting end point are quite remarkable, namely, it
turns out that SR exists for some small value of the dimen-
sionless parameter=vL/D, while for a larger value of this
parameter our(sufficien) method shows no SR that, of
course, cannot be considered as a proof of its absence. Notice
that an existence of SR only for restricted values of param-
eters appears in some other cases as (gek, for example,
the Appendix or{25]). Since no SR appears in the case of
two absorbing boudarig20] one concludes that the asym-
metric boundary conditions favor an onset of SR for a peri-
odic telegraph signal.

The intriguing problem of the necessary and sufficient
conditions for the onset of SR still remains open.

ditions for the existence of SR, and numerical simulation is

necessary.

IV. CONCLUSIONS

The overdamped motion of a particle subjected to di
chotomous noise has a long history. As we show in the Ap
pendix, SR already appeared][it3,14], although no special
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APPENDIX

attention had been focused on this subject in the middle 1o MFEPT for a particle located initially at poimt, dif-

1980s. Without going into the long history we should point
out two recent articles. We have obtaingib] the general

fusing on a segmentlI(;L) with two absorbing boundaries
and subjected to asymmetric dichotomous noise has the fol-

solution of equation of motion of a particle subjected tolowing form [14]
white Gaussian and asymmetric dichotomous noise. How-

ever, the results are presented in quite a complicated form a L(a+b)
suitable only for numerical analysis. The author$1$] con- Na(a+b)(L2=x3) L-xgh. b
sidered the problem mathematically equivalent to ours, but T=2 L 0 Za . (A1)
their analysis is directed towards approximate detecting of 2a%b a 2o

the location of the minimum and the minimal value of the Na

MFPT. Our analysis of the exact result and all limit cases

complement the studies performed[it6,19. Analyzing the One can easily see from E@¢Al) that the MFPT has an
limit behavior of the MFPT we have shown the efficiency of extremum, i.e., the equatiothT/d\,=0 has solutions ifa

the geometrical method of detecting an existence of SR. This-b. Hence,we have proved the nonmonotonic dependence
method becomes of crucial importance in the cases when thef T as function ofx, (SR) for this simple case.

[1] R. Benzi, S. Sutera, and V. Vulpiani, J. Phys.14, 1453
(1991).

184, 339 (1994); J.M. Cassado, J.J. Mejias, and M. Moirillo,
ibid. 197, 365(1994.

[2] L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, Rev. [8] F. Marchesoni, Phys. Lett. 231, 61 (1994.

Mod. Phys.70, 223(1998.

[3] I. Dayan, M. Gitterman, and G.H. Weiss, Phys. Rev@\ 757
(1992.

[4] N.G. Stocks, N.D. Stein, and P.V.E. McClintock, J. Phys. A
26, L385 (1993.

[5] A. Fulinski, Phys. Rev. B52, 4523 (1995; V. Berdichevski
and M. Gitterman, Europhys. Le®®6, 161(1996; Phys. Rev.
E 60, 1494(1999.

[6] Z. Gingl, L.B. Kiss, and F. Moss, Europhys. Lef9, 191
(1995.

[7] M. Gitterman, 1.B. Khalfin, and B.Ya. Shapiro, Phys. Lett. A

[9] V.S. Anishchenko, A.B. Neumann, and M.A. Safonova, J.
Stat. Phys70, 183(1993.

[10] J.C. Fletcher, S. Havlin, and G.H. Weiss, J. Stat. PR§s215
(1994).

[11] M. Gitterman and G.H. Weiss, J. Stat. Phg4, 215 (1994).

[12] A.B. Bulsara, S.B. Lowen, and C.D. Rees, Phys. Revi%
4989 (1994; M. Gitterman and G.H. Weissbid. 52, 5708
(1995.

[13] P. Hanggi and P. Talkner, Phys. Rev3E 1934(1985.

[14] J. Masoliver, K. Lindenberg, and B.J. West, Phys. Re\B3A
2177(1986.



PRE 61 STOCHASTIC RESONANCE IN ONE-DIMENSIONA. .. 4731

[15] V. Balakrishnan, C. Van der Broeck, and P. Hanggi, Phys.[20] J. Porra, Phys. Rev. B5, 6533(1997.

Rev. A 38, 4213(1988. [21] P. Reimann, Phys. Rev. Left4, 4576(1995; Phys. Rev. E
[16] M. Gitterman, R.I. Shrager, and G.H. Weiss, Phys. ReG6E 52, 1579(1995.

3713(1997). [22] C.W. GardinerHandbook of Stochastic Methods for Physics,
[17] .M. Porra, A. Robinson, and J. Masoliver, Phys. Re\b3: Chemistry and the Natural SciencéSpringer, Berlin, 19883

3240(1996. [23] H.S. Carslow and J.G. YaegeZonduction of Heat in Solids
[18] C.R. Doering and J.C. Gadoua, Phys. Rev. L6éf, 2138 (Clarendon, Oxford, 1959

(1992; U. Zucher and C.R. Doering, Phys. Rev4E, 3862  [24] 3. Masoliver, A. Robinson, and G.H. Weiss, Phys. ReB1E

(1993. 4021 (1995.

[19] M. Boguna, J.M. Porra, J. Masoliver, and K. Lindenberg,[25] C. Van den Broeck, Phys. Rev. &, 4579(1993.
Phys. Rev. E57, 3990(1998.



