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Stochastic resonance in one-dimensional diffusion with one reflecting
and one absorbing end point

M. Gitterman
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 16 December 1999!

An analysis of the nonmonotonic dependence of the mean-free-passage time on the frequency of a periodic
signal@stochastic resonance~SR!# for diffusion on a segment with one absorbing and one reflecting end point
shows that SR exists only for some restricted values of parameters. SR always exists if the periodic telegraph
signal is replaced by a random one. The latter case is considered in detail.

PACS number~s!: 02.50.2r, 64.10.1h
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I. INTRODUCTION

The stochastic resonance~SR! phenomenon found ini-
tially in dynamic nonlinear systems driven by a combinati
of a random and a periodic field force@1# appears, at first
glance, as contradictory. Indeed, resonance, which is a
nomenon usually associated with deterministic syste
arises in stochastic systems as well. In some sense, S
opposite to the phenomenon of deterministic chaos, stu
intensively in the 1960s and 1970s, where the seemin
stochastic features appear in nonlinear dynamic syste
Both phenomena of deterministic chaos and SR show
deterministic and random phenomena complement ra
than contradict each other. This discovery, like that of
uncertainly principle, is beyond the scope of nonlinear m
chanics, having more general meaning, and represents o
the main achievements of 20th century physics. It is not s
prising, therefore, that—again like in the case of determin
tic chaos—the number of researchers involved in the st
of SR is increasing@2#.

We understand the phenomenon of SR in a broad se
namely, as the nonmonotonic behavior of an output signa
some function of it as a function of some characteristics
the noise or of the periodic signal. Such a widespread d
nition includes not only SR,per se, but also the related phe
nomena of ‘‘resonance activation,’’ ‘‘coherent stochas
resonance,’’ etc. However, even with the large variety
models of SR that have been analyzed and different app
tions, there is still incomplete understanding of the con
tions that may be necessary to produce SR. At first, the
pression was that all three ingredients, nonlinearity, perio
and random forces, are necessary for the appearance o
Then, it became clear that SR is generated not only i
typical two-well but also in a monostable potential both
the overdamped@3# and in the underdamped@4# cases. More-
over, it turns out that SR occurs even when each one of th
ingredients is absent. Indeed, SR exists in linear syst
when the additive noise is replaced by nonwhite multiplic
tive noise@5# or, in slightly artificial systems without interna
dynamics at all@6#. The periodic signal cannot be replace
by a constant force in overdamped systems@7# but with such
PRE 611063-651X/2000/61~5!/4726~6!/$15.00
e-
s,
is

ed
ly
s.
at
er
e
-
of

r-
-
y

se,
or
f

fi-

f
a-
i-
-

c,
R.
a

se
s

-

a replacement SR remains in underdamped systems@8#. In
turn, deterministic chaos may induce the onset of SR inst
of a random signal@9#.

Slightly different are the systems where a particle is d
fusing on a line terminated by one or two traps. Such s
tems may be said to be characterized by two states, on
which the particle is untrapped and the second in which i
trapped. These two states appear instead of two states
double-well potential. Quite surprisingly, it turned out
early as in 1988@10# that the mean first passage tim
~MFPT!, until the particle is trapped by one of the en
points, behaves nonmonotonically as a function of both
frequency@10# and the amplitude of the periodic force@11#.
Similar phenomena exist also in a one-dimensional diffus
process on a semi-infinite line terminated by a trapping po
driven by a periodic force and a constant bias~to ensure that
the MFPT will be finite! @12#. According to our terminology
these phenomena also come under the heading of SR.

As in the previously mentioned examples, the charac
istic frequency that one needs for a ‘‘resonance’’ can
supplied to a system not only by the external periodic fo
but also by the inverse correlation time of the nonwh
noise, which can be applied to a system in addition to th
mal white noise. A dichotomous noise~random telegraph
signal! is the simplest form of nonwhite noise. The MFP
for a diffusive particle subjected to dichotomous noise h
been calculated by constructing of all possible trajectories
@13,14#, and for both white and dichotomous noises in@15#.
However, the topic of SR was not raised in these articles
the 1980s, although it was inherent therein.

When the phenomenon of SR is being discussed in
1990s for these linear systems, it turns out that the bound
conditions play a crucial role, namely SR~which was called
in this case ‘‘the coherent stochastic resonance’’! exists only
when one of the boundaries is absorbing and the other
flecting @16#, while it is absent when both boundaries a
absorbing@17#. The same crucial influence of the bounda
condition appears in a different problem of jumps in a line
double-well potential when the slope of the potential ra
domly fluctuates between two values at a rateg. The non-
monotonic dependence of the MFPT ong ~called ‘‘the reso-
4726 ©2000 The American Physical Society
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PRE 61 4727STOCHASTIC RESONANCE IN ONE-DIMENSIONAL . . .
nance activation’’! @18#—see also@19#—again exists only
when the boundary conditions are different at two endpoi
Actually the similarity between these two problems—on
dimensional diffusion under the influence of white and
chotomous noise, and the jumps through fluctuating lin
potential—is not so surprising since they are described
the same differential equations.

The aim of this article is the analytical study of SR f
one-dimensional diffusion on the segment under the in
ence of a telegraph signal for the case when one end poi
this segment is absorbing while the other is reflecting. T
cases will be considered: one of the periodic telegraph
nal, and the other of a random telegraph signal~dichotomous
noise!.

Since the calculation techniques are quite different
these two cases, we will consider them separately.

We explore further the previously indicated@20,21#
method of finding the sufficient~not necessary! condition for
detecting SR in complicated problems where the exact s
tion is not available. If one wants to find whether the dep
dence of a characteristic time~MFPT in our case! on the
frequency of an external field, or on the noise correlat
time, or on the rate of fluctuations of some internal parame
is non-monotonic, the following method is suggested. Fi
one has to find—by some approximate method—the
limit values of the characteristic time for zero and infin
values of the argument. In order to know whether SR~non-
monotonic dependence! exists one has to find the asymptot
dependences for very small and very large arguments. If
characteristic time approaches the largest~smallest! limit
value from above~below!, the nonmonotonic behavior wil
be the geometric consequence. We illustrate this proce
in the case of periodic signal, and check it in the case
random signal where the exact analytical solution is av
able.

II. RANDOM TELEGRAPH SIGNAL

The state variablex(t) is described in the overdampe
regime by the following Langevin equation

dx

dt
5j~ t !1 f ~ t !, ~1!

where j(t) is zero-mean uncorrelated white noise who
second-order moment iŝj(t)j(t1)&52Dd(t2t1), in which
D is the diffusion constant. The second component of
noise, f (t), is the symmetric dichotomous noise~random
telegraph signal! that is allowed to take of the valuesv and -
v. The jump rates for the transition between these two st
will be denoted by 2t so thatt21 is the noise correlation
time.

The calculation of the MFPT,T(x0), for the time to trap a
particle, initially at x0, diffusing on a line segment (0,L)
terminated by a trap atx50 and by a reflecting point atx
5L, is a well-known procedure@22#. One starts with the
Fokker-Plank equation for the probability densityp(x,t) as-
sociated with the Langevin equation~1!. Integration of this
equation over time and space gives the differential equa
for the mean first passage timeT5*0

Ldx*0
`dt p(x,t). The

appropriate equation@16#
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D2
d4T

dx0
4

2~v21Dt!
d2T

dx0
2

5t ~2!

has to be solved subject to the boundary conditions at
reflecting boundaryx05L

dT

dx0
50 and

d2T

dx0
2

52
1

D
, ~3!

and at the absorbing boundaryx050,

T50 and D2
d3T

dx0
3

2v2
dT

dx0
50. ~4!

Skipping a considerable amount of routine algebra we ob
the solution of Eq.~2! subjected to the boundary condition
~3! and ~4! as

T52
x0

2t

2~v21Dt!
1

v2

m3@v21Dtcosh~mL !#

3H Lt

D2
sinh@m~x02L !#2

v2

mD3
cosh@m~L2x0!#

2
t

mD2
cosh~mx0!1

t

mD2
1

v2

mD3
cosh~mL !

1
Lt

D2
sinh~mL !1

mtDx0

v2 F Lt

D2
cosh~mL !

1
v2

mD3
sinh~mL !G J , ~5!

wherem5(v2/D21t/D)1/2.
There are three characteristic times in our problem. T

first onet15L2/D, has its origin in the diffusion process, th
second onet25t21 is the correlation time of the noise, an
the third onet35L/v, represents the strength of noise for t
given problem. It is convenient, therefore, to introduce tw
dimensionless parametersa5t3 /t15D/vL and b5t3 /t2
5Lt/v. Using these parameters and introducing the dim
sionless lengthy5x0 /L one can rewrite Eq.~5! in the fol-
lowing form:

T5
L2

2D H 2
aby2

11ab

1
1

n3@11ab cosh~n!#
F4b

a
sinhS ny

2 D coshS n~22y!

2 D
1

4

a2n
sinhS ny

2 D sinhS n~22y!

2 D2
4b

an
sinh2S ny

2 D
1y

2b
sinh~ny!12ynb2cosh~ny!G J , ~6!
a
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4728 PRE 61M. GITTERMAN
wheren5mL5(1/a21b/a)1/2. A few limiting cases are of
interest. Whena@1 for fixedb, or b@1 for fixeda, Eq. ~6!
reduces to the well-known expression@22# for the MFPT for
diffusion on a segment with one absorbing (x50) and one
reflecting (x5L) end points,

T52
x0

2

2D
1

x0L

D
. ~7!

This result is quite natural sincea@1 or t1@ t3 means
the diffusion is the fastest and, therefore, the decisive fac
while b@1 or t2!t3 implies that for very high rate, the
dichotomous noise does not influence the MFPT.

For low rate of dichotomous noise,b!1, Eq.~6! reduces
to

T5
2D

v2
sinhS vx0

2D D sinhS v~2L2x0!

2D D . ~8!

A comparison between Eqs.~7! and ~8! shows that the
limit expression~8! for small rate of dichotomous noise
always larger than the limit expression~7! for large rates,
and reduces to it only if, in addition,a@1. The latter result
could be expected since the conditionsa@1 andb!1 mean
t2.t3.t1, i.e., the diffusion process is the fastest and th
the decisive one.

Hence, we have obtained that the MFPT for zero rate
always larger than that for infinite rates of the dichotomo
noise. If we can show now that the MFPT is increasing w
t for large rates approaching the limit value~7!, then the
existence of a minimum of the MFPT as a function oft will
be a geometrical consequence.

To simplify the further analysis let us choose the init
position of a particle at the reflective boundary,x05L or y
51. Then Eq.~6! takes the following form

T5
L2

2D H 2
ab

11ab
1

1

n3@11ab cosh~n!#
F4b

a
sinh~n!

2
4b

an
sinh2S n

2D12nb2cosh~n!1
4

na2
sinh2S n

2D G J
~9!

and its expansion for largeb5Lt/v is

T5
L2

2D S 12
1

ab
1••• D , ~10!

i.e., the MFPT approaches the limit value at infinite no
rate ~smaller than that at zero rate! from below, which is
evidence for the existence of SR.

At the same time, the asymptotic value of Eq.~9! for
small b has the following form

T5
L2

2D H 4a2sinh2S 1

2a D2bFa14a2sinh2S 1

a D
14a3sinh2S 1

2a D G1•••J , ~11!
r,

n

is
s

l

e

which shows that the MFPT with the increasing noise r
b5Lt/v decreases from its~larger than that at infinite rate!
limit value atb50, i.e., no conclusions concerning the e
istence of an additional maximum of the MFPT can be ma
from this analysis.

III. PERIODIC TELEGRAPH SIGNAL

We return now to the original equation~1! where, how-
ever, the random telegraph signalf (t) is replaced by the
periodic one

f ~ t !5H 1v for te@2nG,~2n11!G#

2v for te@~2n11!G,~2n12!G#,
~12!

where G is the period of the telegraph signal, andn
50,1,2, . . . . Therate~frequency! v of the signal is equal to
v5(2G)21.

The Fokker-Planck equation corresponding to the Lan
vin equation~1!

]p6

]t
56v

]p6

]x
1D

]2p6

]x2
, ~13!

subjected to the initial conditionsp6(x,t50ux0)5d(x
2x0), has a well-known@23# solution on the segment (0,L)
terminated by the reflecting pointx50 and by absorbing
point x5L

p6~x,tux0!5
2

L
expF6v~x2x0!

2D
2

v2t

4DG
3 (

n50

`

cos~bnx!cos~bnx0!exp~2Dbn
2t !,

~14!

where bn5@(2n11)p#/2L. The general solution of ou
problem can be obtained now by matching the solutions~14!
corresponded for bias6v at the times at which the telegrap
signal ~12! changes sign. If one definesPk(x),k50,1, . . . ,
as the probabilities that at timet5kG when the bias change
its sign the system is found at positionx,x1dx, the quanti-
ties Pk(x) can be found@20# from the obvious recurrence
relations

Pm11~x!5E
0

L

p6~x,Guy!Pm~y!dy, ~15!

where the signs ‘‘1 ’’ and ‘‘ 2 ’’ in Eq. ~15! correspond to
m52n andm52n11, respectively, and the initial conditio
P0(y)5d(y2x0), which leads to

P1~y!5p1~y,Gux0!. ~16!

Then, the mean-free-passage timeT turns out to be equa
@24,20#

T5 (
n50

` E
0

G

dtE
0

L

dxE
0

L

dy@p1~x,tuy!P2n~y!

1p2~x,tuy!P2n11~y!#. ~17!
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The limit expressions for infinite and zero frequencies c
be found independently using the differential equations
the MFPT @22#. For v→`, the quickly oscillating signal,
like in the case of dichotomous noise, does not influence
MFPT, which is defined only by pure diffusion, and turns o
to be equal@22#

T~v→`!5
L22x0

2

2D
. ~18!

Notice that Eq.~18! is slightly different from Eq.~7! since
now x50 is the reflecting point, andx5L is the absorbing
one.

For the opposite limit casev50, the MFPT for a system
driven by white noise and a constant bias can be easily fo
@22#:

T~v50!5
L2x0

v
1

D

v2 FexpS 2
vL

D D2expS 2
vx0

D D G .
~19!

The latter equation can be also obtained by substituting~14!
and ~16! into Eq. ~17! with G5`, i.e.,

T~v50!5E
0

`

dt E
0

L

dx p1~x,tux0!

5
2D

L
expS 2

vx0

2D D

3 (
n50

` F ~21!nbnexpS vL

2D D2
v

2DG
S Dbn

21
v2

4D D 2

3cos~bnx0!. ~20!

A comparison between Eqs.~18! and ~19! shows that, as
opposed to the case of dichotomous noise, for the perio
telegraph signalT(v50)!T(v→`). In order to find the
small corrections inv to Eq. ~19! one has to find the appro
priate terms in the general expression~17! for the MFPT. We
use here the straitforward procedure rather than the soph
cated methods used in@24,20#.

According to Eq.~14!, the time-dependent terms in E
~17! are of the form exp@2(Dbn

21v2/4D)t#, i.e., after inte-
gration over t they will transform to exp@2(Dbn

2

1v2/4D)/2v#. This strong exponential dependence onv al-
lowes us to leave only then50 terms in Eq.~17! which,
after using Eq.~16!, leads to the following expression for th
the MFPT for smallv

T~v!'E
0

G

dtE
0

L

dxp1~x,tux0!

1E
0

G

dtE
0

L

dxE
0

L

dyp2~x,tuy!p1~y,Gux0!.

~21!
n
r

e
t

d

ic

ti-

Retaining only the leading term of the MFPT expansi
aroundv50, which is of order exp@2Db0

21v2/4D/2v#, it is
possible to keep onlyn50 terms in thep1 functions in Eq.
~21!, although the sum enteringp2 function has to be re-
tained. Under these assumptions, using Eq.~14! and per-
forming integration overx in the second term in~21! one can
rewrite the leading term in the latter equation in the follo
ing form:

T~v!5
2

L
cos~b0x0!expS 2

vx0

2D DexpF2

Db0
21

v2

4D

2v
G

3H 2

E
0

L

cos~b0x!expS vx

2D Ddx

S Db0
21

v2

4D D
1E

0

L

dy cos~b0y!expS vy

2D D

3 (
n50

`
2D

L

F ~21!nbnexpS 2
vL

2D D1
v

2DG
S Dbn

21
v2

4D D 2

3cos~bny!expS vy

2D D J . ~22!

There is no need to calculate the sum in Eq.~22! since the
same sum—with opposite sign ofv—already appeared in
Eq. ~20!, and one can use the result of summation given
Eq. ~19!. Substituting~19! with the opposite sign ofv into
~22! one gets

T~v!5
2

L
cos~b0x0!expS 2

vx0

2D DexpF2

Db0
21

v2

4D

2v
G

3H 2

E
0

L

cos~b0x!expS vx

2D Ddx

S Db0
21

v2

4D D
1E

0

L

dycos~b0y!expS vy

2D D

3H 2
L2y

v
1

D

v2 FexpS vL

D D2expS vy

D D G J J .

~23!

Performing integration in Eq.~23! one obtains the expan
sion of the MFPT nearv50,



on
i

di
p

l
d
in

to
ow
or

b
o

he
e

of
h
t

of
al.

ion

ave
uch

bing
y, it
en-

f
otice
m-

of
-
ri-

nt

rk
pi-

s
fol-

nce

4730 PRE 61M. GITTERMAN
T'
L2

2D
expS 2

gx0

2L D cosS px0

2L DexpF2~g21p2!
D

8L2v
G

3H 16

~p21g2!2 F24p expS g

2D13g2
p2

g G
1

8

g~p21g2!
Fpg expS 3g

2 D2exp~g!1gG
2

8

g~p219g2!
Fpg expS 3g

2 D23G J , ~24!

where g5vL/D. Analysis of Eq.~24! shows that this ex-
pression is positive forg.g051026, and negative forg
,g0, i.e., for smallg,g0 the MFPT decreases withv start-
ing from its minimal value~19! at v50. Therefore, SR ex-
ists in this case. However, for largerg.g0 one cannot draw
a definite conclusion as to whether SR exists for suchg from
this asymptotic analysis that defines only the sufficient c
ditions for the existence of SR, and numerical simulation
necessary.

IV. CONCLUSIONS

The overdamped motion of a particle subjected to
chotomous noise has a long history. As we show in the A
pendix, SR already appeared in@13,14#, although no specia
attention had been focused on this subject in the mid
1980s. Without going into the long history we should po
out two recent articles. We have obtained@16# the general
solution of equation of motion of a particle subjected
white Gaussian and asymmetric dichotomous noise. H
ever, the results are presented in quite a complicated f
suitable only for numerical analysis. The authors of@19# con-
sidered the problem mathematically equivalent to ours,
their analysis is directed towards approximate detecting
the location of the minimum and the minimal value of t
MFPT. Our analysis of the exact result and all limit cas
complement the studies performed in@16,19#. Analyzing the
limit behavior of the MFPT we have shown the efficiency
the geometrical method of detecting an existence of SR. T
method becomes of crucial importance in the cases when
ev

A

A

-
s

-
-

le
t

-
m

ut
f

s

is
he

exact solution is not available, as we show in the example
a motion under the influence of the periodic telegraph sign

The latter problem has been considered for the diffus
on a line with two absorbing end points@24,20#, where quite
complicated analyses of the low-frequency behavior h
been used. We suggested a much simpler method for s
analysis. The results obtained for our case of one absor
and one reflecting end point are quite remarkable, namel
turns out that SR exists for some small value of the dim
sionless parameterg5vL/D, while for a larger value of this
parameter our~sufficient! method shows no SR that, o
course, cannot be considered as a proof of its absence. N
that an existence of SR only for restricted values of para
eters appears in some other cases as well~see, for example,
the Appendix or@25#!. Since no SR appears in the case
two absorbing boudaries@20# one concludes that the asym
metric boundary conditions favor an onset of SR for a pe
odic telegraph signal.

The intriguing problem of the necessary and sufficie
conditions for the onset of SR still remains open.
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APPENDIX

The MFPT for a particle located initially at pointx0, dif-
fusing on a segment (-L,L) with two absorbing boundarie
and subjected to asymmetric dichotomous noise has the
lowing form @14#

T5
la~a1b!~L22x0

2!

2a2b
1

L2x0

a

a

la
1

L~a1b!

b

a

la
12L

. ~A1!

One can easily see from Eq.~A1! that the MFPT has an
extremum, i.e., the equationdT/dla50 has solutions ifa
.b. Hence,we have proved the nonmonotonic depende
of T as function ofla ~SR! for this simple case.
,
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